Vari-Vert 40-6 Meters A Flagpole'ish Antenna

Excerpt from the TVARC presentation of February 2017

by Don Crosby, W1EJM

An "Electrically" Variable Vertical

The design, construction and performance of an inexpensive "Low Observable" antenna that provides 40-6 Meter capability.

- The antenna 'looks like' and performs like a Flagpole.
- 20' Flagpoles are allowed in Florida by State Statute <u>720.304 (2b)</u>.
- Commercial antennas with controllable length elements are expensive and generally require maintenance or repair *by the manufacturer*.
- The following slides deal with an electrically similar homebrew antenna that is simple to build and easy to maintain.

Flagpole Type Verticals

20' Flagpole, Non-Resonant (in ham bands)

- Requires a Remote Tuner at the antenna, OK
- Tuner In Operator Location, Not so good....

 $\frac{1}{4} \lambda$ Resonant Vertical, so.... No Tuner (aka; Marconi antenna)

Thinking.... SteppIR Vertical? You are close!

Trade-Off's

Flagpole Radiator

- Remote Tuner *Required*
 - -100 watt class or big \$\$\$
 - Tuner is somewhat delicate
 - Tuner loss, moderate
 - Cost ~\$350
 - Aluminum Flagpole
 - Tuner
 - Bias T

 $\frac{1}{4} \lambda$ Resonant Radiator

- No Tuner
 - Legal Limit, No Tuner Loss
 - Simple Mechanics
 - No critical dimensions
 - Cost~\$350
- •Carbon Fiber Pole
 - Homebrew Mechanics
 - Enclosures, Micro Processor/Display,
 - Bias T

Not a clear winner..... BUT

If any repair is needed you can do it yourself after all you built it. A sense of accomplishment is worth something! Great talking point

The Vari-Vert

Parameters:

- True $\frac{1}{4}\lambda$ Antenna
- Low Angle for DX op's
- 20 6 Meters - No Tuner needed
- 40-30 Meters uses 2 relays and a tapped L, fixed C
- Digital Control / Readout Unit
- Build it all for ~\$350

Uses inexpensive, readily available component parts Tools; a Dremel Rotary, a Soldering Iron and household tools

"Fiberglass" Flagpole Material Properties

Carbon Fiber, non-conductive, ideal antenna support

Carbon Fiber and Aluminum similar strength

Deflection for 20', 2"dia, 0.125 wall, 1# Force

Deflection calculator for round tube beams	
Input	Output
Length (inches) 240 Diameter (inches) 2	Aluminum 1.42"
Wall thickness (inches) .125 Force (pounds) 1	Deflection (inches) 1.41779302179 Bending Stress (psi) 738.433865520 Energy (joules) 0.080093711729
Material Aluminum	Lindy (build) biotecon m2
Input	Output
Length (inches) 240 Diameter (inches) 2	Carbon Fiber 1.4"
Wall thickness (inches) .125 Force (pounds) 1	Deflection (inches) 1.39684041556 Bending Stress (psi) 738.433865520 Energy (joules) 0.07891006081
Material Std. Carbon Fiber Fabric V	Energy (Jourss)

Mast Components

- Fiberglass Pipe 8' by 1.5", 1.75", 2"dia.
- Homebrew Low Friction Pulley
- Hose Clamps between pipe sections

Vari-Vert Mechanism Layout

Vari-Vert "All-Up"

- Radiating wire length is set for $\frac{1}{4}\,\lambda$

Vari-Vert Component Trade-Off's

Motor Options

- Brush Type DC,
- Brushless DC,
- Stepper,
- AC

I just used things on hand.

- Brush Type DC Motor
- Multi-Turn Potentiometer

Sensor Options

- Multi-Turn Potentiometer
- Incremental Encoder
- Absolute Encoder \$\$\$
- Mechanical Counter

Remote Motor Box

Model Layout

Height is Variable Radials 8-10' & 8-20' @ 1" above Ground *for Model* * Average Soil C=5ms, Er=13 Nec2 Modeling Engine

* The NEC-2 Modeling Engine does not permit wires below ground, but comparisons by L.B. Cebik W4RNL (SK) indicate above ground provides good correspondence

NEC2 Modeling Predictions

- 21' Flagpole with Tuner to Match at the FP Base
- Vari-Vert Radiator Length set to $\frac{1}{4}\lambda$ by remote
- Note: Vari-Vert acts as $\frac{3}{2}\lambda$ at 50.5 MHz

7.2, 14.2, and 18.1Mhz Elevation Plots Shapes

21.2, 24.9, and 28.5Mhz Elevation Plots Shapes

Provides ~1.6db Gain overall advantage

Desktop Controller

Requirements:

- Digital display of Frequency and Length
- Smooth motor speed ramping
- Expandable functions and inexpensive
- Future features....
 - Pushbutton command to calibrate the radiator length *
 - Stall sensor motor shutdown *

Controller Components

Controller Breadboard

Arduino Development Program (Free)

Connectivity by USB to the 3 board stack

Display Readout

"The Programmer IDE... PC or MAC"

IDE means.. Integrated Development Environment

- Features
 - "Sketch" entry for typing in your program code
 - Details any errors it uncovers in the code
 - Compiles and loads the code to the target computer board
 - Calculates memory usage
 - Provides Serial Monitor for debugging
 - Powers up the hardware through the USB
- Arduino IDE is a FREE download
 - Lots of shared software "sketches" on the web
 - Good 'forum' support for beginners
 - Lots of easy projects to get your feet wet

Field Experience

- Operated at a local hams QTH during Nov Dec 2016
- Good contacts and on-the-air reports operating CW at 3-5 watts
- Experienced mechanical hang-ups due to the jerky start / stop motion

As Demo'ed at the TVARC Meeting

- Microprocessor Smart Controller was designed during the field evaluation period.
- Microprocessor code was written debugged and readied for testing
- The micro processor provided smooth start/run/stop and resolved the hang-ups

Interested in more info about this antenna?

Ryright

- Don, W1EJM QRZ.com Phone book
 - 443.150MHz